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ABSTRACT

This paper presents a framework allowing parallel MRI to be

optimized. Parallel imaging relies on good coil sensitivity

map estimates. As these sensitivities are determined experi-

mentally, errors may occur during their assessment, whether

using prior calibration (due to patient motion between cal-

ibration and actual scan), or autocalibration (due to lower

resolution, suboptimal estimates). Here we reformulate re-

construction as a coupled inverse problem, consisting of si-

multaneously solving the parallel imaging problem, based on

SENSE algorithm, and minimizing the propagation of sen-

sitivity map errors in that reconstruction. The problem is

practically solved using a multiresolution fixed-point itera-

tive method, producing both the reconstructed image and op-

timized sensitivity maps. The method was validated by com-

paring sensitivity maps and reconstructed images obtained by

standard SENSE reconstruction, based on a reduced number

of autocalibration signal (ACS) data, to those obtained by the

proposed method, starting from the same ACS data as initial

guess.

Index Terms— Coupled problems, fixed-point iteration,

magnetic resonance, recontruction, parallel imaging

1. INTRODUCTION

Parallel MRI relies on additional information provided by the

spatial sensitivities of radiofrequency (RF) surface coil arrays

in order to invert aliasing artifacts produced by undersampled

k-space acquisition, below the Nyquist frequency [1]. This

technique allows scan time to be reduced by a factor equal

to the undersampling ratio. However there are several issues

associated with the experimental determination of these coil

sensitivities. A first approach consists of measuring them

in a low resolution calibration scan, performed prior to the

scan of interest. In practice, the computation may be affected

by noise, and by regions in which no signal lies (division

∗This work was funded by RNTS 2003 and Région Lorraine.
†The first author performed part of the work while at CMIC, London,

funded by UK EPSRC E001564.

by zero), referred to as holes. Polynomial fitting and binary

masks can be used [1] in order to overcome these difficulties,

as well as methods inspired from image inpainting problems

[2]. All parameters involved are thus optimal for the calibra-

tion scan, but may not be optimal for the scan of interest, due

to patient motion in particular. This is one reason why alter-

native techniques, named autocalibrated, have been proposed

recently [3, 4, 5]. These techniques are based on the acquisi-

tion of certain autocalibration signal (ACS) data, embodied in

the pulse sequence of interest, allowing simultaneous acquisi-

tion of undersampled k-space data and coil sensitivities. A re-

duced number of ACS data should be used, otherwise the ben-

efit of using parallel imaging, in terms of scan time reduction,

is minimized. However using too few ACS data yields lower

resolution, suboptimal sensitivity maps, and thereby may not

completely invert aliasing artifacts.

It has been suggested recently that a reconstructed image

(here, using the SENSE algorithm [1]) and coil sensitivities

could be estimated jointly [6, 7]. Reconstruction is then re-

formulated as a large scale non-linear problem, consisting of

optimizing a cost function (a quadratic criteria derived from

the signal equation) with respect to two sets of parameters:

the reconstructed image and the parameters describing coil

sensitivities. Although the number of unknowns may be high

and lead to an underdetermined system, one way to overcome

the problem is, as proposed by the authors, to decouple the

large-scale problem, by optimizing the cost function with re-

spect to each set of parameters successively and iteratively,

leading to two smaller (and better conditioned) problems.

This paper proposes to extend the latter method and ad-

dress certain issues that may arise. Parallel imaging is re-

formulated in terms of two coupled inverse problems: im-

age reconstruction (assuming known sensitivity maps) and

minimization of sensitivity map error propagation (assum-

ing known image). A model for sensitivity maps is intro-

duced in order to solve the sensitivity map optimization prob-

lem. This model is similar to that proposed in [2], as it in-

cludes several constraints (smoothness and sum-of-squares

consistency of the coil array). A multiresolution, fixed-point

iterative method is then described for solving the coupled
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problem. The framework was tested on real data by com-

paring reference image and sensitivity maps, extracted from a

fully sampled acquisition, to those obtained by the proposed

method, using an undersampled dataset and a reduced number

of ACS lines.

2. THEORY

2.1. Parallel Imaging Reconstuction

The general theory of parallel imaging was described in [1, 8].

Assuming coil sensitivity estimates are available, reconstruc-

tion of the image ρ from the k-space signal s can be seen as

the inversion of the following signal equation, written in ma-

trix formalism:

s = Eρ, with E =

⎡
⎢⎣

ξFdiag(σ1)
...

ξFdiag(σNγ)

⎤
⎥⎦ , (1)

where we used the following notations:

- ξ is the sampling operator (0/1 values in Cartesian case),

- F is the 2D/3D Fourier transform operator,

- diag(σγ) is the γth coil sensitivity weighting operator.

It is possible to take into account noise correlation be-

tween coil elements by introducing a noise covariance matrix

ψ. Writting ψ = LLH , then the problem is still described by

Eq. (1), after applying the substitutions s := {L−1⊗ IdNγ
}s

and E := {L−1 ⊗ IdNγ
}E, as shown in [8]. This amounts

to working on virtual decorrelated receivers. In the remain-

der of this paper, we will assume that ψ = Id in order to

simplify notations, however taking into account noise corre-

lation between receivers would be straight forward using this

transformation.

2.2. Propagation of Coil Sensitivity Estimation Errors

Assuming an error δσ = {δσ1| · · · |δσNγ
} is made when de-

termining sensitivity maps (using either prior sensitivity cal-

ibration or autocalibration), then the signal equation (1) is

modified in the following manner:

s = Eρ + ε, (2)

with ε being a reconstruction residue induced by this error.

The residue expression is given below and can be rearranged:

ε=

⎡
⎢⎣

ξFdiag(δσ1)
...

ξFdiag(δσNγ)

⎤
⎥⎦ ρ

=

⎡
⎢⎣

ξFdiag(ρ) 0
. . .

0 ξFdiag(ρ)

⎤
⎥⎦

⎡
⎢⎣

δσ1
...

δσNγ

⎤
⎥⎦

=R(ρ)δσ

(3)

Equation (3) gives a theoretical expression describing

sensitivity map error propagation. In particular, if a mask is

applied to sensitivity maps, and if patient motion occurs, the

misalignement will generate a δσ composed of strong edges.

Then the voxel-wise products diag(ρ)δσγ will contain high

spatial frequencies that will enter the Fourier operator, thus

creating undesired ghost artifacts in the reconstructed image.

Sensitivity maps having too low resolution will weight the

voxel-wise products diag(ρ)δσγ with intermediate spatial

frequencies, which may modify the contrast.

2.3. Generalized Reconstruction by Inversion of Coupled
Systems (GRICS)

We propose to optimize the description of coil sensitivities

by inverting Eq. (3) in order to estimate and compensate the

error δσ. Combining Eq. (1) and Eq. (3), the parallel imag-

ing problem is reformulated in terms of two coupled inverse

problems:

{
s =E(α)ρ SENSE reconstruction

ε(ρ, δσ)=R(ρ)δσ Sensitivity optimization (4)

3. METHODS

3.1. Model for Coil Sensitivity Optimization

Inverting sytem (3) is not easy as it may be underdetermined,

especially when using an high number of coil elements. Nev-

ertheless not all these data are independent, and it is possi-

ble to introduce a model imposing several constraints on the

solution sensitivity maps. We propose to use the model de-

scribed in [2], although here our main optimization criteria

is derived from Eq. (3) (data fidelity criteria). This model

includes two constraints in addition to the data fidelity crite-

ria. The first one is a smoothness term imposed on sensitivity

maps. This term also allows sensititivity values to be extrap-

olated in areas containing holes. The second constraint forces

the sum-of-squares of the coil element array to be equal to

one. This enables us to remove one degree of freedom as-

sociated with the magnitude of these sensitivity values, and

ensures a certain consistency of these maps with respect to

signal homogeneity in the field of view. If D is the domain

in which the data fidelity criteria is imposed (i.e. defined by

a binary mask λD(x)), then sensitivity map optimization can

be seen as minimizing the following functional:

E(δσ,∇δσ) =
∫
Ω

λD(x)|R(ρ, σ)δσ − ε|2dx
+μ

∫
Ω
|∇(σ + δσ)|pdx

+ν
∫
Ω

(
1−

√∑Nγ

γ=1 |σ + δσ|2
)

dx
(5)

The power term is set to p = 2 in our application for simplic-

ity, corresponding to an isotropic diffusion constraint. The

solution of Eq. (5) is achieved by writting Euler-Lagrange

equations (see details in [2]). We propose however a slightly
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different implementation, as this process will be repeated iter-

atively (see section 3.2). At each iteration, we fix the nonlin-

ear term arising from the Euler-Lagrange equation (from the

sum-of-squares term) to the value obtained with results from

the previous iteration. Therefore the computational complex-

ity of the nonlinear problem is reduced significantly, and only

two linear system solvers are called within the main fixed-

point loop to solve problems (1) and (5).

Although the magnitude is constrained by the sum-of-

squares term, a phase is left as a degree of freedom in the

coupled problem, and it may be distributed to either the

image or the sensitivity maps. Here we were interested in

reconstructing the magnitude image. Therefore, once the so-

lution determined, we applied the phase to the sensitivities,

thus allowing comparison between the reference complex

sensitivties and those obtained by the GRICS method.

3.2. Multiresolution Fixed-Point Iteration

We propose to solve the coupled system (4) by means of a

fixed-point iterative method. Starting from an initial guess

σ(0) of sensitivity maps, given by the ACS lines, the algorithm

consists of successively solving each optimization problem

individually, while other optimization parameters are fixed.

Therefore a first image estimate ρ(0) is found by inversion of

Eq. (1) using initial sensitivity map estimates. Then the re-

construction residue is evaluated by ε = Eρ(0) − s. The sec-

ond inverse problem in (4) is solved using the minimization

procedure (5), yielding an estimate δσ(0) of the error made

on sensitivity maps. The model is finally updated: σ(1) =
σ(0) + δσ(0). The next iteration is started using the updated

model, and iterations are performed until a stopping condi-

tion is reached (e.g. ε stops decreasing). The two linear sys-

tem inversions involved in each iteration were solved using

the GMRES algorithm.

Nonlinear optimization problems are known to depend

strongly on initialization. A question that arises is how well

would such a method perform in the presence of a small

amount of ACS data (e.g. yielding the worst initial guess). To

address this issue, the afore mentioned fixed-point algorithm

is performed inside a multiresolution loop. Hence, reduced

problems are solved first, using only the most central data

in k-space as inputs of the coupled problem. Reduce image

and coil sensitivity maps are found first, and are interpolated

before being used as initialization of the next resolution level.

The starting resolution is chosen according to the number of

ACS lines, as they provide the initial guess.

3.3. Validation on Subject Data

MRI data were acquired on a GE 1.5 T Signa scanner (Gen-

eral Electric, Milwaukee, WI), with an 8 element cardiac coil

array. Cardiac data from two healthy volunteers were used.

Imaging was achieved using an ECG triggered black-blood

RARE pulse sequence (black blood FSE, 256x256 matrix, 1.4

mm pixel size, TE=35 ms, ETL=16, TI=650 ms), acquired

in breath hold, and providing a short axis slice of the heart.

The k-space acquisition was fully sampled, so that reference

data as well as undersampled data could be reconstructed and

compared.

Reference, high resolution sensitivity maps were ex-

tracted from the fully sampled k-space, using a central square

of 64 (with windowing). Sensitivities were computed by

pixel-wise division of each coil signal by the sum-of-squares

reconstruction of all coil elements.

A reduced number of lines, again taken in the center of

k-space, were also chosen as ACS lines. Then we retrospec-

tively selected an undersampled subset of the k-space to ap-

ply parallel imaging reconstrutions, based on these ACS data.

Several reconstructions were compared: first, a self-calibrated

SENSE (SC-SENSE) reconstruction, based on the high reso-

lution sensitivity maps, was used as reference; second, a SC-

SENSE reconstruction, using raw sensitivity estimates given

by ACS lines; third, the GRICS method, with raw sensitivity

estimates given by ACS lines as initialization. Errors made on

senstivity map estimates and on reconstructed images, com-

pared to their respective references, were assessed by the nor-

malized root mean squared error (NRMSE).

Table 1. Error in sensitivity maps and reconstructed image.

NRMSE(σ) (10−1) NRMSE(ρ) (10−4)
ACS lines SC-SENSE GRICS SC-SENSE GRICS

Subject 1

2 4.5 2.4 14.4 12.9

4 4.1 1.8 11.6 6.4

8 2.2 1.4 3.9 4.2

Subject 2

2 4.4 2.5 16.2 8.4

4 4.2 2.0 13.3 6.3

8 2.2 1.8 5.0 4.8

4. RESULTS

Table 1 shows results obtained with SC-SENSE and with the

proposed GRICS method. Both sensitivity maps and recon-

structed images were improved with GRICS compared to us-

ing raw sensitivities obtained from ACS data. The best im-

provement was achieved when using 2 or 4 ACS lines, as they

generated the worst sensitivity map estimates. Using 8 ACS

lines, in these examples, was already enough to reconstruct

an image without significant aliasing artifacts.

An example of such reconstruction results is also given

in Fig. 1, with corresponding sensitivity maps in Fig. 2. In

this example, the restriction to 4 ACS lines provided signif-

icant errors in sensitivity estimates, producing residual alias-

ing artifacts with a SC-SENSE method. The GRICS solution
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was able to improve both the sensitivity map estimate and the

reconstructed image, and reduce residual artifacts using SC-

SENSE.

(a) (b) (c)

Fig. 1. Example parallel MRI reconstructions with a reduc-

tion factor of R=2: self-calibrated SENSE based on high res-

olution sensitivity maps (64 ACS lines) (a), self-calibrated

SENSE using 4 ACS lines (b), and the proposed GRICS

method using 4 ACS lines as initial guess (c).

(a) (c) (e)

(b) (d) (f)

Fig. 2. Example sensitivity map (one coil, with binary mask

applied for visualisation): high resolution sensitivity map (64

ACS lines) magnitude (a) and phase (b); low resolution map

(4 ACS lines) magnitude (c) and phase (d); GRICS solution

(4 ACS lines as initial guess) magnitude (e) and phase (f).

5. DISCUSSION AND CONCLUSIONS

In the GRICS framework, parallel imaging is reformulated as

a coupled inverse problem. Its resolution, using a fixed-point

method, allows both the coil sensitivity maps and the recon-

structed image to be improved compared to using raw, low

resolution coil sensitivity estimates. This approach could be

applied to autocalibrated parallel imaging in order to reduce

the number of ACS lines to embed in the pulse sequence of

interest, which may be useful especially in 3D, or in fast dy-

namic imaging such as in k-t approaches.

However the proposed approach requires solving a large

scale optimization problem, and hence may rely on good ini-

tialization. Here we proposed a multiresolution strategy in or-

der to minimize this effect. We also proposed a relatively effi-

cient implementation in terms of computation time, as fixed-

point iterations involved in the solution of the nonlinear opti-

mization problems (the large-scale problem (4) and the sensi-

tivity map optimization (5)) were grouped into the same loop,

inside which two linear problems are solved.
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